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Analytic Simplification of a System of
Ordinary Differential Equations at an Irregular-Type Singularity

Po-FANG HSIEH*

Mathematics Research Center
Mathematics and Information Science Division

Abstract: Let lW(p) = diag (Al,.. .,M,u) for given complex Mk. If Re ilk > 0
(1 6 k < n), then the (m+n)-system xCI+ly' = F(x,z)y, xz' = ln(A)z is simplified to
xu+1Y' = G(x,Z)Y, xZ' = ln(g)Z by a transformation T defined as y = Y + P(x,Z)Y,
z = Z in a sector having property-f with respect to { (Xi - X 1 )(axo)

1 Ii,j= 1,.. .,s (i # j)

where xi (i= 1,2,. . .,s) are distinct eigenvalues of F(0,0) and G(x, Z) is in block-diagonal
form agreeing with the Jordan canonical form of F(0,0).

I. INTRODUCTION

1. Singularity of Nonlinear Equations

For a system of nonlinear differential equations given by

xw' = h(x,w) (1.1)

where w' = d/dx, w and h are s-column vectors, x is a complex variable, the quantity h(0,0) = 0, and
every component of h(x, w) is holomorphic at (0,0), the singular point x = 0 is said to be of the Briot-
Bouquet type. Since the work of C. C. A. Briot and J. C. Bouquet [1] in 1856, many authors, in-
cluding H. Dulac, E. Picard, H. Poincar6, P. Painlevd, J. Malmquist, and M. Hukuhara and T. Kimura
(cf. [2] ) have devoted study to this type of singularity. Recently, M. Iwano published a series of
papers [3-8] devising a method to find general solutions of Eq. (1.1) when the matrix h"(0,0) is
singular, and particularly in the form

/0 0\

hW(0,0) = ( } >) 0 H/

where H is a nonsingular matrix whose size is smaller than s. In doing this, he encountered a system
of equations of the form

x0 y' = f(x,y,z), xz' = g(xyz) (1.2)

with irregular-type singularity, where y and f are m-column vectors, z and g are n-column vectors, a is
a positive integer, f and g are holomorphic in a neighborhood of (0,0,0), f(0,0,0) = 0 and g(0,0,0) = 0,

Note: This work is partially supported by NSF Grant GP 14595.
*The author is on sabbatical leave from the Department of Mathematics, Western Michigan University. NRL Problem

B01-11, Project RR 003-02-41-6153. This is a final report on one phase of the problem. Work is continuing on
other phases. Manuscript submitted February 18, 1971.
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A = fy(0,0,0) is nonsingular, gy(0,0,0) = 0 and, furthermore, g_(0,0,0) = diag (/11,,U2,...

with Re IUk > 0 for k = 1,2,.. .,n. It should be noted that f.(0,0,0) = 0,fx(0,0,0) = 0 and gy(0,0,0) =
0 are nonrestrictive conditions under the assumption that A is nonsingular. However, one of the
assumptions Iwano [6] imposed is that the eigenvalues of A are mutually distinct. In order to relax
this assumption, it is necessary to reduce fy(x, 0,z) to the simplest form. This is the purpose of the
present paper; we want to reduce fy(x,0,z) to a block-diagonal form such that the simplified matrix
coincides with the Jordan canonical form of A at x = 0, z = 0.

2. Notations and Definitions

In order to simplify expressions we introduce several notations and definitions.
The m by m unit-matrix is denoted by 1m For an m-column vector y with elements 01,

1m(y) denotes an m by m diagonal matrix with diagonal elements {Yj}.
If u is an m-column vector with elements {ui}, [u] denotes an m-column vector with elements

{luji}. For another m-column vector fi with elements {ij}, [u] 6 [i] means that Ju1 l < Ifijl for each
index i.

For an m-row vector q = (q1 ,q2 , . .,qm), the components are all nonnegative integers and we
define

Iq= q + .+ qm. (2.1)

For an m-column vector y with elements {yI}, the symbol y q stands for the scalar quantity

yq = y 1 ,l . qM (2.2)

The norm of an m-column vector y with elements {yj} is

m
llyll = max Iyjj. (2.3)

For a scalar t and an m-row vector y with elements {yI}

ty = (ty , . . tYm), (2.4)

exp y = (expy,. . ., exp ym) (2.5)

and

Rey = (Rey,,. . .,Reym), Imy = (Imyl,. ..,ImYm). (2.6)

If y is a column vector, then ty, exp y, Re y, and Imy are all column vectors.
For an m-column vector y with elements {yj} and an n-column vector function f(x,y) with

elements {fj(xy)}, the notation fy(x,y) denotes an n by m matrix given by

fy(x,y) = (Af(xy),..., - Af(xy))- (2.7)

A function f(x) which is holomorphic and bounded in x for

0 < Ix < a, E < argx < (2.8)

2
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where a, e, and e are given constants and admits an asymptotic expansion in powers of x as x tends to

0 is said to belong to class C(e,E),a).
A vector f(x,y, z) which is holomorphic in (x,y, z) for

0< IxI <a, /E< argx < 6, Ilyll <b, IZII <C (2.9)

is said to have Property-1t with respect to y and z in Eq. (2.9) if its components admit uniformly con-

vergent expansions in powers of y and z for Eq. (2.9) and if the coefficients of these expansions
belongto class d (Q,e,a).

Given a finite number of monomials of x-l of the same degree a

nj(x) = X - Y 1= 1, 2, . . .A)

the sectors of the form

(arg y( i - + 27rhi) < argx < (arg yj + + 2irhJ) (2.10)

and

1 (arg yi+ + 27rhh < argx < a(arg y + + 2rnhij) (2.11)
a ~~~ 2 -a~ 2

where hi and hj are integers, are said to be a maximal negative region of 2 (x) and a maximal positive

region of 92i(x), respectively, indicating the sign of the quantity Re Q(x) in these regions.

A sector Q < arg x < e is said to have Property- 5T with respect to monomials {Q 1(x), .. ., m(x)}

if this sector does not contain any maximal negative region of &2,{x) for each index j and if in this
sector there is a direction for each index j such that, as x tends to the origin along this direction,
exp (Re E2j(x)) tends to infinity exponentially.

3. Main Theorem

Consider a system of differential equations

XU+ly' = F(x,z)y, xz' = ln(AI)z (E1 )

where y is an m-column vector, ,u and z are n-column vectors, with constant elements {ftk} for ji,

a is a positive integer, and F(x, z) is an m by m matrix holomorphic in (x, z) with Property-'ll with
respect to z in

0 < IxI < a, Q < argx < , IIZII < C (3.1)

with a, Q, e, and c as given constants.
Let F° denote the matrix

F° = lim F(x,0), for Q < arg x < 0.
x o0

3
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We further assume

(i) the matrix FO has distinct eigenvalues X1 ,X2 , . . .,X, with multiplicity m 1 ,m 2 ,..-,Ml,
respectively (ml + m2 + + ms = m);

(ii) every component of p satisfies

Re Pk > 0

By assumption (i) we further assume, without loss of generality, that

F0 = diag (F',F2,...,F?)

where FJ9 is an mi by mi matrix of the form

F-° = Xjimj + D

0 -

Di = .\ .

A11(x) = - X'--XI
ax 0

0
Simi 0/

(8ji = 0 or 1).

Then, the main theorem is

THEOREM M. Assume that (i) and (ii) are satisfied and that the sector 9 < arg x < e has Prop-
erty-5f with respect to {Agj(x)I, i,j=1,2,. . .,s; ij}. Then there exists a transformation T defined as

X+ CIY- = Y + P(X,Z) Y,

x'+_Y' = G(x,Z)Y,

z =Z (T)

xZ' = ln(p)Z (E2 )

G(x,Z) = diag(G1(x,Z),G 2(x,Z),...,G,(x,Z)) (3.6)

with the Gy(x, Z) being m1 by mi matrices; and
(ii) the entries of P(x,Z) and G(x,Z) are holomorphic in (x,Z), have Property-l1 with respect to

Z in

0 < Ixj < ao, e < argx < c3,

(32)

with

(3.3)

(3.4)

Put

(3.5)

such that

(i) Eq. (El) is reduced to

where G(x,Z) is an m by m block-diagonal matrix of the form

4

(k = 1, 2, .. ., n).

(ij= 1,2,.. .,s;i*j).

11Z11 < co, (3.7)
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where O < ao < a, 0 < co < c, and satisfy

P(x,O) = 0 and lim G(x,O) = FO, for E < argx < & (3.8)
x-*o

Assumption (ii) includes the case where the vector p = 0, namely, z is a parameter independent
of x. In this case, Theorem M includes the special cases of the simplification of equations containing
parameters studied by W. J. Trijitzinski [9], M. Hukuhara [10], H. L. Turrittin [11], Y. Sibuya [12],
and P. F. Hsieh [131].

Chapter II will be devoted to preliminary algorithm, reducing the proof of Theorem M to two
types of nonlinear differential equations. In order to find the solutions of these equations, two funda-
mental existence theorems are needed. These theorems, Theorem A and Theorem B, will be stated
and proved in Chapters III through V.

Theorem A and Theorem B resemble two theorems proved by M. Iwano [7] using a fixed-point
theory devised by M. Hukuhara. Recently, they were proved by P. F. Hsieh [14] using the successive-
approximations method. The first theorem actually is in simpler form than earlier results. However,
because of the complication and also the resemblance in the proof of Theorems A and B, the sketch
of the proof of Theorem A will be given in Chapter III. Theorem B is a refinement of earlier result,
due to the fact that assumption (ii) is broader than earlier assumptions.

II. PROOF OF MAIN THEOREM AND NONLINEAR EQUATIONS

4. The Leading Term

Since the matrix F(x,z) has Property-ti with respect to z, it can be expanded into a uniformly
convergent series of the form

F(x,z) = F0(x) + zqFq(x) (4.1)

for x, z in Eq. (3.1), where Fo(x) and Fq(x) are m by m matrices holomorphic in

O < IxI < a, E) < argc < (4.2)

and belong to ((, Qa).
As the first step in proving Theorem M, it is necessary to block-diagonalize Fo(x) according to

the form of Eq. (3.3). This process itself resembles the proof of the Main Theorem.

LEMMA 1. Given a system of m equations

x+ly' = Fo(x)y (4-3)

where Fo(x) is an m by m matrix holomorphic in Eq. (4.2), belongs toe (e, Eta), and satisfies

lim Fo(x) = FO, for e9 < argx < 0. (4.4)
x-To

T'hen, there exists a transformation

y = n + Q(45)

5

(4.5)
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such that the system of Eq. (4.3) is reduced to

xa+rl' = (FO + Go(x)),7 (4.6)

where Q(x) and G0(x) are m by m matrices holomorphic in

0 < lxj < a', and e < argx < 6, for 0 < a' 6 a, (4.7)

belong to (e ,ea'), and satisfy

lim Q(x) = 0 and lim Go(x) = 0 for E < argx < 6. (4.8)
x-N0 x-*0

Further, Go(x) is in the same block-diagonal form as that in Eq. (3.3).

In order to prove this lemma, put

Fo(x) = FO + Fo(x). (4.9)

Then Fo(x) is holomorphic in Eq. (4.2), belongs to C(E,6,a), and

lim Fo(x) = 0 for 0 < argx < 0. (4.10)
x-~0

From Eqs. (4.3), (4.5), and (4.6), we have

xa+lQ' = Fo(x)(lm + Q(x)) - (1m + Q(x))(FO + GO(X)).

Or, by Eq. (4.9),

xo+IQ- = (FOQ - QFO) + (Po(x) - GO(x)) + (Po(x)Q - QGo(x)). (4.11)

In order to find Q(x) and Go(x) satisfying Eq. (4.11) and the properties described in Lemma 1, let us
denote Fo(x), P(x), and Go(x) in block forms according to that of FO as shown in Eq. (3.3). Due to
the first formula of Eq. (3.8), it is sufficient to find Q(x) in off-block-diagonal form. Thus, put

= FI°(x) FO (x) ... F 0,(x)

\FsF(x) F ... F

GO(X) = G2
0( * G(X)) (4.12)

and

0 Q12(x) ... QIS(X)

Q(x) = Q21(X) 0 ... Q2S(X)

\QI (x) Qs2(x) ... 0

6
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where F,°j(x) and Qj(x) are mi by m1 matrices, and G,°(x) are mi by mi matrices. Then the Fj(X)
belong to e(Q,6,a) and satisfy

lim Flj°(x) = 0 for E < argx < 0. (4.13)
x-*0

Substituting Eq. (4.12) into Eq. (4.11), we have

G1
0(x) = FB°(x) + E F(x) Qj i

xa+IQ!= (FtoQij- QjFj0) + E Fio (x)Q2, - Qij G0(x) + Foj(x (4.14)
h~i (i ¢j)

By finding the solutions Q1j(x) from the second equation, then G1?(x) can be obtained from the first
equation.

Substituting the first equation of Eq. (4.14) into the second, we have

xa+IQ'= (FOIQj - QjF9) +2FO, - Q( t+F ' F Qh. + Fl0. , (i:j). (4.15)
hfi h:Aj

By picking the entries in each of the Qii suitably, Eq. (4.15) is an (M2 - Zm?)-column vectorial
nonlinear equation of the form

x+ly' - f(x,y) (4.16)

where f(x,y) is holomorphic in (x,y), has Property-11 for

0 < IxI < a, Q < argx <0, lyll < b (4.17)

and satisfies

lim F(x,0) = 0, for 0 < argx < 0. (4.18)
x-*0

Moreover, the matrix Fy(0,0) is nonsingular and in the lower triangular form with eigenvalues
Xi - Xi (ij= 1,2, . .. ,s; iij).

From these facts, we know that Eq. (4.16) has a formal solution of the form

y 2 x g2 (4.19)

2=1

where the g& are constant vectors. Further, due to the fact that the sector 0 < arg x < E has Prop-
erty-Jf with respect to {A1j(x)ij=l,2, .. .,s (iQf)} by Theorem A to be proved in Section III, we
know that Equation (4.16) has a solution y(x) which is holomorphic and bounded in

7
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0 < IxI < a' and E9 < argx < 6, for 0 < a' < a (4.20)

and belongs toE (9,6,a') with asymptotic expansion given by Eq. (4.19).
By the use of this result, we know that the Eqs. (4.14) have solutions Gi°(x) and Qj1(x) which

are holomorphic, bounded in Eq. (4.20), and belong to C(Q ,e,a') with asymptotic expansions of the
form

Gp(x) = Ex2Gg
91=l

Qj(IX) = 21 XQQijQ

Q=1

5. Nonlinear Equations

In the light of Lemma 1, we can assume without loss of generality, that Fo(x) is in the block-
diagonal form of FO + GO(x). Similar to the process in Section 4, put

F(xz) = Fo(x) + H(xz), G(xz) = Fo(x) + G(xz). (5.1)

Then H(x, z) and G(x, z) are holomorphic in

0 < IxI < a', Q < argx < 3,

H(x, 0) 0,

liZil < c

G(X,0)= 0.

From Eqs. (El), (T), (E2 ), and (5.1),P(x,Z) and G(xZ) satisfy

Xr+lP- = (Fo(x)P - PFO(x)) + (H(xZ) - G(xZ)) + (H(xZ)P - PG(x,Z)) ,l

xZ' = 1n(ji)Z. 

(5.2)

(5.4)

F0 (x) (X)

7H 1 1

H(x, Z) = H2 1

\SI

H12

H22

Hs2

... H':)... H2s

.. HSS

and

Put

(5.3)

F2 (X)

8

(i = 1, 2, . . ., s)

Q, j = 1, 2, . . ., s; i =Aj).

0

F,,(x)
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Gx(Z) G) 0)
.(5.5)

/ o P1 2 ... pi,

P(xZ) = I(2. 2 P2S

IPs Ps2 ... O 0

Then

Gj(x,Z) = Hii(x,Z) + 2 Hij (x, Z)Pj, (x, Z)
fi

x a+,P~l = (A(x)Pi1 - P 1Fj (x)) +21 HihPhj - PijGj + Hj (5.6)
hsi (ij)

xZ' = ln(I)Z

Or, by substituting the first equation into the second,

xa+,Pj = (FiPi - PiAF) + 2 HihPhj -Pij(Hjj + 2 HjhPhj) + Hj,

xZ' = ln (11)Z

Similar to Eq. (4.15), Eq. (5.7) can be written as an (m 2 - lim?)-column vectorial equation of
the form

xa+ly' = f(x,y,z)
(5.8)

XZ' = ln( })z
where y and f are (Mi2 - Im?)-column vectors, and F(x,y, z) is holomorphic in (x,y, z) and has Prop-
erty-'U with respect toy and z in

0 < IxI < a', 9 < argx < , IylI < b, IlZII < c. (5.9)

Furthermore,

f(x,0,0) 0 (5.10)

and the matrix
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A4 = lim fy(x,0,0), for ( < argx < 9, (5.11)
x-*o

is in the lower triangular form with nonzero eigenvalues Xi - X1 (ij=1,2, .. .,s; i',j).
Thus the problem is reduced to finding the solution y =R(x, V(x)) for (5.8), where V(x) is a

holomorphic solution of xz' = l(tt)z, such that R(x,z) is holomorphic in (x,z) and has Property-'U
with respect to z in Eq. (3.7).

6. Formal Solution

By the assumptions on f(xy,z), it can be expanded in the following uniformly convergent
series

f(x,y,z) = fo(x,z) + A(x,z)y + ypf,(x,z) (6.1)
Ip1=2

where p is an (m2 - Xmn2)-row vector with nonnegative integer components, and the vectors fo(x, z),
fp(x,z) and the matrix A(x,z) are holomorphic in (x,z) and have Property-'t with respect to z for

0 < Ixl < a', E) < argx < e3, IlZI < c. (6.2)

Moreover,

fo(x,0) - 0

and

limA(x,0) = A, for 9 < argx < 9.
x-o

Thus we have the following uniformly convergent series expansions

fo~~x~z) 0021zfqx
f0(xz) = 2 z qfoq x

q10O

A(x,z) = ZqAq(X)

Iqj=0

where q is an n-row vector with nonnegative components, and fq(X), fpq(x), and Aq(x) are in the
class C (O ,6,a').

10
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In order to find a formal solution of the form

E zqRq(X) (6.3)

Iqj=1

for Eq. (5.8), differentiate Eq. (6.3) formally, and, by the fact that xz' = l(4i)z, we have

Xar+lY f x a+1 2ZzqR q(X) + x q.IzqRq(x). (6.4)

Iql= IqI'=1

On the other hand

Xa1Y Zqfo (X + q q (X E Zq q)

1q1=1 q=
(6.5)

IP1=2 q= l=

Equating the coefficients of zq in the right-hand members of Eqs. (6.4) and (6.5), we have

x u+1Rq = [Ao(x) - (ixaq.I)l(:sM 2)] Rq + Hq(x) (6.6)

where the Hq(x) are linear combinations of foq, fpq, and Aq, with coefficients being polynomials of
Rq (I qI < Ijql).

Since lim Ao(x) = A" is nonsingular, we can find a unique formal solution, successively for q,
in the form

Rq(X) 2 x2 RqQ. (6.7)

.Q=o

However, by Theorem A to be given in Chapter III, there exists a unique solution Rq(x) which is
holomorphic and bounded in

0 < IxI < a', E < argx < (6.8)

and belongs toC(E9 ,6,a') with asymptotic expansion given by Eq. (6.7). Let z = V(x) be a holomorphic
solution of xz' = ln(,u)z. Then we get a formal solution

j ; V(X)qRq(x) (6.9)

for Eq. (5.8).

Remark. Since Eq. (6.6) is a linear differential equation with Ao(x) independent of q, we thus
have Rq(x) holomorphic in (6.8) for all q.
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7. Analytic Solution

Since the sector E < arg x < e has Property-5 with respect to {Atj(x)Iij=l,2, . . .,s; i*11,
Theorem B, to be given in Chapter IV, assures that Eq. (5.8) has a solution

y = R(x, V(x)) (7.1)

such that R(x, v) is holomorphic in x, v for

0 < jxj < ao, E3 < arg x < @, lvll < co (7-2)

where 0 < ao 6 a', 0 < co < c, and it possess a uniformly convergent power series expansion (6.9)
whenever (x, V(x)) satisfies Eq. (7.2). Furthermore,

R(x,0) - 0. (7.3)

By the application of these results to Eqs. (5.7) and (5.6), Theorem M is proved.

III. FIRST EISTENCE THEOREM

8. Theorem A and Its Equivalent Problem

The remainder of this report will be devoted to two existence theorems mentioned above for
the proof of Theorem M.

For the first theorem, consider a system of nonlinear differential equations

xa+ly' = f(x,y) (E3)

where y and f are m-column vectors, andf(x,y) is holomorphic, bounded in (x,y) for

0 < Ix < a, E1 < argx <9, IylI < b (8.1)

and belongs toC (9,6,a). Further, we assume that

(i) the matrix

A" limfy(x,0), for E < argx < 9, (8.2)

is in the form of

AO = lm(y) + D, det lmY() # 0 (8.3)

where 'y is an m-column vector with elements {Ay} and D is an m by m nilpotent matrix of lower
triangular form; and

(ii) equation (E 3 ) possesses a formal solution

Y 2 X~gQ (8.4)

Q=O

12
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where the gQ are constant m-column vectors, and in particular

Ilgoll < b. (8.5)

Let

n21(x) = 24 (=1,2, .. ,i). (8.6)ax

The first existence theorem is

THEOREM A. Assume that the sector 9 < arg x < e has Property-5f with respect to
{ 92(x),. .. , 92m(x)}. Then Eq. (E3 ) has a unique solution d(Dx) which is holomorphic and bounded
for

0 < IxI < ao, E < argx < (8.7)

where 0 < ao 6 a, and admits the asymptotic expansion (&4) as x tends to 0 in the sector (8. 7).

In order to prove Theorem A, let N be a positive integer and consider the following transforma-
tions to Eq. (E3 ):

N-1

y = x g2 + WN (8-8)
Q=o

and

wN = lm(en(x))?N (8.9)

where E2(x) is the m-column vector with elements {E2j(x)}. Then ifN(x) satisfies

Xc+l71Q = 1m(e 2 (X))f(X,1m(e (X))iN) (8.10)

where f(x, w) is an m-column vector having Property-l with respect to w in

0 < IxI < aN, < argx <D, IIwII < b (8.11)

and satisfies the inequality

IIf(x,w)Ij 6 HIwIwI + BNIXIN (8.12)

where aN, BN, H, and bN are constants, with H independent of N. Further, f(x,w) satisfies a
Lipschitz condition

IIf(xw 1) - f(x,w 2 )11 < HIIwl -w211 (8.13)

for (x, wl) ar (8.11).
Sine atrix , = D and is nilpotent, we can assume, without loss of generality, that

H sati'

13
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m
4H < I'll I'sin 2ae, for IIyjII' = min l 1zj, (8.14)

for a preassigned positive constant e.

Then, the proof of Theorem A is reduced to solving

Problem A. If we have Eq. (8.14), then there exists a unique solution ON(x) of Eq. (8.10) such
that, for a suitable choice of aN and KN,

(i) spN(x)is a holomorphic and bounded m-column vector for

0 < Wx < aN, E) < arg x < (8.15)

and
(ii) SON(x) satisfies

[LN(X)] < KNIxIN[e-Re n(x)I (8.16)

for x in Eq. (8.11).
Furthermore, a solution of (8. 7) satisfying

[pN(X)] = 0(IXIN)[e- Re n(x)] (8.17)

is unique.

Theorem A can be derived from the solution of this problem by an argument similar to that to
be given in Section 13 below.

9. A Stable Domain

In order to find the solution of Problem A, it is necessary to replace (8.15) by a domain of the
form

0 < Ixj < avo(argx), 1 < argx < e (9.1)

where Cd(r) h a strictly positive-valued, bounded, continuous function of r for e9 r < 6 , to be
defined soon. The domains (8.15) and (9.1) are equivalent in the sense that any point in (9.1) is

contained in (8.15), if aN is suitably chosen, and vice versa. The domain given by Eq. (9.1) is called

a stable domain of Problem A.
The directions arg x = 0j in the sector

9 < argx < 9, (9.2)

such that Re 92i(x) = 0 for arg x = Ok, are called singular directions of 921(x) and are given by

arg y + T+ 2i) (9.3)

or

(argy - 2r + 2rh ) (9.3)'

14
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where h and h' are some integers. Singular directions of the form (9.3) are called ascending singular

directions of Rj(x), and those of the form (9.3)' are called descending singular directions. When

Re Ri (x) is regarded as a function of arg x = 0, it is a monotonic increasing (or decreasing) function of

arg x in a small neighborhood of each direction of the form (9.3) (or of the form (9.3)').

For the indices j such that Re Rj(x) change their signs in (9.2), we choose arg yj so that at

least one of the two singular directions

01+ = (arg.y T +2 (9.4)+

-= a(arg iy + ) (9.4)

is contained in Eq. (9.2). By the assumption that Eq. (9.2) has Property-5s with respect to

{fj(x), . . ., m@(x)}, we can classify the setJ'= {l,2, . . .,m} of indicesj into four classes:

Jo = {j;ReOi (x) > 0 for e < argx <

Ji = {i; @ < 0j+ < 0 - <

J2 = {; e < 0j+ < e < 0j_}

J3 = {i; 0i+ < 0 < -< < }

For jeJ 2 we define 0_ by Eq. (9.4)-, and for jeJ 3 we define 0.+ by Eq. (9.4)+. Some of these four

sets may be empty. Especially, either Jo or J1 is empty because (as when JO is not empty, 9 - 9) < 7r/a,

and (b) when J1 is not empty, 9 - E3 > 7r/o. Therefore, J = J1 U J2 U J3 , or J = Jo U J2 U J3 -

Since the sector given by Eq. (9.2) has Property-5f with respect to {2 1(x), .. Om.,m(x)}, for a

sufficiently small positive number e, 9 and ) must satisfy the inequality

max 0.+ +6e) < E < 9 6 inOm - 6e) (9.5)

for all jeJ1 U J2 U J3 or JO U J2 U J3 . Put

aok+ =max 0X+ and ek = min 0.. (9.6)jejk ~~~~jeJk
A scalar function A(r) in 9 <r ( 6( is defined as

-9(T -E + 4e), for 93 + 2 - 4e 6 T 6 EA(T)= 2Xor -2a + 6 62-2a
A(T){. , for E) + L+ 4e <r <E +' --4e 97

2 2+ ~2u 3 + 2a(97

G(r- a +-4e) + 7r, for 9 6 92 + a4e.

15
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Then A(T) satisfies

2ae 6 A(T) 6 7T- 2ae, for 9 < r < 6 . (9.8)

The function @(T) is defined as

(T)= exp { cotA(t)dt}, (9.9)

where 00 is an arbitrary angle in (9.2).

10. A Fundamental Inequality

In order to find the solution to Problem A, we need an integral inequality.

LEMMA 2. Let x1 be an arbitrary point in the domain (9.1). Then there exists an in-vector
path rF, with elements {friJ} such that

(i) each curve rix, joins the point xl with the origin and is contained in (9.1), except for the
origin, and

(ii) if a" satisfies

2AT(aN maxwc(r))a 6 1Fy!l'sin2ae, (10.1)

then

J XIN-0-a-ReS2i(x)d < 2 jieRe i(X1)

x e s l i lyII' sin2ae (10.2)

Here s1 is the arc length of rix, measured from the origin to the variable point x on this curve.

In order to define rixl, we define first an m-vector a(-) with elements a1(r) in the closure
of Eq. (9.2). If jeJ0,

ai () = 2 , for (3 6 T 6 9. (10.3)

If jeji,

gu(To- r+4e), for 0_ - 2e < T < e

a1(r) = ; 72T, for 0.+ + 2e <T < O.- - 2e (10.4)

U(r-01-4e) + 7r, for 9 < T < 0+ + 2e .

16
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If ieJ2 ,

0, for 0.+ + 2e 6 r 69
(10.5)

o(r- 0j -4e) + IT, for 9 < r 6 0j+ + 2e

If jeJ3,

U(r- 0- + 4e), for 0.i - 2e 6 r 6 <

a1(r) = ( 10.6)
-2 ,for - 6 T 6 - + 2e

By virtue of Eq. (9.4), we have

2ae 6 aj(-) < 7I - 2ue, for 9 6 r < e, (10.7)

and by Eq. (9.5),

r a1(r) 6 A(r), for f - 2e < r 6 e (e 1eJJ 3 )
(10.8)

a1(r) 6 A(r), for E r T 60j+ + 2e (CJ1, J 2)

Hence, we have

S: cot ai(t)dt 6 5 cot A(t)dt (d0.9)

for 0 6 r 6 0.+ + 2e (jeJjj 2), and for 0._- 2e 6 Tr•60 (jeJ1,J 3).
Let (r,0' and (p,r) be the polar coordinates of the point xI and of the variable point x on the

curve rj,1 respectively. Then the curve rj,1 is defined as follows:
(i) If 0 <o0+ + 2e or 0_ - 2e < 0, the curve rFx, consists of a curvilinear part ri given by

p = rexpJ cotai(t)dt {
°~e or(10.10)

6 < 6 0 + + 2e or 0_- 2 e 6 r 6 

and of a rectilinear part r7 given by

0 6 p < rexp[ cotaj(t)dt°r = 0 + + or -.(10.11)
r = 0.+ + 2e or 0._ - 2e. I

17
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(ii) If 0j+ + 2e 6 0 • 0X_ - 2e, the curve rFx1 consists only of a rectilinear part F'7given by

0 6 p 6 r, TO = . (10.12)

By virtue of Eq. (10.9), the curves Fixl defined by Eqs. (10.10) and (10.11), or (10.12), are
contained entirely in the domain given by Eq. (10.1), except for the origin. This proves assertion
(i) of Lemma 1.

In order to prove assertion (ii), we will prove

d (IXINee-Re ,&)) a 11711 sin 2a 1xIN-a-le-Refli(x), (10.13)

instead, for x on rFxl, except for xi, the joint of rj and ri'. By the fact that WNe-Reni(x) is
bounded in the neighborhood of xlZ, Eq. (10.2) follows immediately by a limit process and by Eq.
(10.13).

For x on the curvilinear part rF, p is a function of r given by Eq. (10.10). By a simple computa-
tion, we have

dx= dTdsT +e"(cota 1(r) + i)sina,(T) = +ee(i(T)+ (10.14)
dsi d'rd Si

where the negative sign is for 0 6 r • 0X+ + 2e, and the positive for 0X_ - 2e 6 T 6 0.
Hence, we have

d (-Re Q2(x)) = ±p-a lyj Icos(ai(r) - ar + arg'y), (10.15)
ds1

and consequently,

d e-Regi(x) = +p-a-ly1,Ye-Reni(x)cos (ai(r) - rT + argyi) (10.16)
dsi 

with the positive sign for 0 67• 01+ + 2e, and the negative for 0._ - 2e 6 < 6•0.
On the other hand, from the definition of a1(7) and of the angles 01+ and 0.-, we have

-2 4ae, for 0 6 T 6 O+ + 2e

ai(r) - ar + argyj = -

Ir + 4ae, for 0 _-2e 6 - 6 0
K.2

Hence

±cos(a1 (T) - a7 + arg y) = sin4ae > sin2ae,

and we have

d e-Ref2i(x) > Ixr 1e-RefZ1(x)II1YII sin 2ae (10.17)
ds1

for x on FI.

18
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Also, since si is real, we have

Ix- dl = d log x = Re x-1 dx (10.18)dsj ds1 ds<

Thus, by Eq. (10.14),

,xrl dlx1 >-X (10.19)
ds1 -- x

for x on Fj.
On the rectilinear part ril, we have s1 = p = Wxl. Thus

d deix) Rd e-Re5(x) - _-Re i(x) d- Re RZ1(x)
ds1 dp

= -e Rei2j(x)p e FY1 I cos (arg yj - oO) > e-Re.2;(x)p-- ,, I sin 2ae

because 01+ + 2e 6 0 6 0 - - 2e. Therefore Eq. (10.17) holds also for rF'. Equation (10.18) follows
immediately for x on r since lxI = si.

By the fact that Eqs. (10.17) and (10.19) hold for rFx1 , we have

d (IXINe-Reni(x)) > iXIN-a-1e-Re&2i(x)(IiyIjI sin 2ae - Nixic),

and Eq. (10.13) follows immediately from Eq. (10.1). Thus, assertion (ii) is proved. This completes
the proof of Lemma 2.

11. Solution of Problem A

For an arbitrary point xl in the domain given by Eq. (9.1), consider a system of integral
equations given by

P(x1) X-0 1 1m(e-"(x))f(x, lm(en(x))p(x))dx, (11.1)

which is equivalent to Eq. (8.11). By the use of Lemma 2 and a discussion analogous to that in
Chapter V, below the solution of Problem A can be found.

Thus Theorem A is proved.

IV. SECOND EXISTENCE THEOREM

12. Statement of Theorem B

Consider a system of m+n equations given by

xG1 y = f(xyz), xz' = ln ()z,

19
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where y and f are m-column vectors and ,u and z are n-column vectors. Here we assume that
(i) f(x,y,z) is holomorphic in (x,y,z) and has Property-i with respect toy and z in

0 < Ixi < a, 9 < argx < l, iiyii < b, iiZii < c; (12.1)

(ii) the matrix

lim f(x,0,0)- A" = lm(Y) + D, for E9 < argx < 9 (12.2)

where y is an m-column vector with nonzero elements {'Y1} and D is an m by m nilpotent matrix of
lower triangular form;

(iiiY every component of p satisfies

Re Pk >, 0 (k 1, 2, . .. ,n); (12.3)

and
(iv) for a holomorphic solution V(x) of the equation xz' = ln(u)z, Eq. (E4 ) possesses a formal

solution

T V(X)qgq(X) (12.4)

Iql=O

where gq (x) are m-column vector functions belonging to C (93 ,6,a), and, in particular,

i1go(x)ii < b. (12.5)

Now, the second existence theorem is

THEOREM B. Assume that the sector 9 < arg x < e has Property-Y with respect to
{Sl (x),..., £Am(x)}, where the Q2(x) are given by Eq. (8.7). Then Eq. (E4 ) has a solution of the form
{'D(x, V(x)), V(x)}, where x and V(x) are in the domain

0 < Ixi < a0 , 9 < argx < '3, ivll < co, (12.6)

and 0 < a0 < a, 0 < co • c. Furthermore, y = 1(x, V(x)) admits uniformly convergent expansion of
the form (12.4) so that IPx,v) has Property-li with respect to v in the domain given by Eq. (12.6).

This theorem is similar to a theorem proved in Refs. 6 and 14. However, the conditions given
by Eq. (12.3) are milder than those assumed for earlier results. Also, Eq. (12.3) includes the case that
Pk = 0 (k=1,2,. . .,n) which, in turn, reduce z to a parameter independent of x, and Theorem B be-
comes a special case of problems studied in Refs. 9-13.

13. Reduction of Theorem B

In order to prove Theorem B, we first consider, for a positive integer N, the following transfor-
mations to Eq. (E4 ):

N-1

y 21 V(x)qgq(x) + WN (13.1)
lql=o
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and

WN = 1m(en(X))1lN. (13.2)

Then, 7qN(x) satisfies

Xr+7 = ly m(e- (x))f(x,V(x); lm(e&2(x))qN) (13.3)

where f(x, v;w) is a holomorphic and bounded m-column vector function of (x, v;w) for

0 < Ixl < aN, E < argx < I, lVI! < CN, iwii < bN- (13.4)

Here aN, cN, and bN are positive constants depending on N, aN 6 a, cN < c, and bN depends on b,
aN, and cN. Further,

f(0,0;0) = 0, and lim fw(x,0;0) = D, for 9 < argx < (3, (13.5)

and Eq. (13.3) has a formal solution

IIN(x) = 1m(e 5(x)) 2 V(x)qgq(x). (13.6)

Iql-N

Since D is nilpotent, we have the inequalities

Ilf(x,v;w)II 6 Hjiwii + BNiiviiN (13.7)

and

jif(x,v;wl) - f(x,v;w2 )ii 6 Hijw1 -w 2Ii (Lipschitz condition) (13.8)

for (x, v;w), (x, v;w'), and (x, v;w2 ) in Eq. (13.4), where H can be taken, without loss of generality, to
satisfy

4H < 1Ili'sin 2ae. (13.9)

Thus, the proof of Theorem B is reduced to solving

Problem B. If Eq. (13.9) is satisfied, then there exists a solution 'PN(x, V(x)) of Eq. (13.3) such
that for suitably chosen ay, c;r, and KN

(i) pN(x,v) is a holomorphic and bounded m-column vector function for

0 < Ix! < av, e < argx < e, liv!! < cN; (13.10)N

(ii) ,pN(x, v) satisfies the inequality

[<pN(X,V)] 6 Ky||V||fN[e-Ren(x)] (13.11)N

for (x,v) in Eq. (13 .1O)N.
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Moreover, a solution of Eq. (13.3) satisfying

['fN(XV(X))] = 0(iiV(X)IIN)[e-Ren(x)] (13.12)

is unique.

In fact, we can prove Theorem B from the solution of Problem B in the following manner.
Owing to Eqs. (13.1) and (13.2), the quantity

N-1

2 V(x)qgq (x) + Im (e ni(X)) ON (X, V(X)) (13.13)

lql=O

is a solution of Eq. (E4 ) provided that (x, V(x)) is in the domain defined by Eq. (13.1 O)N. Let N'be
an integer greater than N. Then

N'-1

1m(e-2(x)),V(x)qgq(x) + PON,(X, V(X)) (13.14)

Iqj=N

is a solution of Eq. (13.3) satisfying Eq. (13 .12 )N if (x,V(x)) belongs to the common part of Eqs.
(13.1O)N and (I3.1O)Nk. Hence, by the uniqueness of the solution, the solution (13.14) must coin-
cide with spN(x, V(x)). Thus the solution of Eq. (E4 ) expressed by Eq. (13.13) is independent of N.
We denote this solution by 1'(x, V(x)). By analytic continuation, the function ¢'(x, V(x)) is defined in
the domain of the form shown in Eq. (12.6) with ao = sup aN, co = sup CN.

On the other hand, v = 0 is an interior point in which 4)(x, v) is defined. Therefore, by Cauchy's
theorem, 4(x, V(x)) can be expanded into a uniformly convergent power series of V(x) whenever
(x, V(x)) is in the domain defined by Eq. (12.6). Clearly, from Problem B, 4(x, V(x)) admits the as-
ymptotic expansion of Eq. (12.4). By the uniqueness of asymptotic expansions, this asymptotic ex-
pansion must coincide with the uniformly convergent expansion. This proves the uniform convergence
of the formal solution, Eq. (12.4).

Thus Theorem B is proved.

14. Stable Domain For Problem B

In order to find the solution of Problem B, it is necessary to replace Eq. (13 .10)N by an equiva-
lent stable domain defined by

0 < ix! < awo(argx), o < argx < 63, [v] < c"[X(argx)] (14.1)

where w(r) is given by Eq. (9.9) and X(r) is an n-column vector function with elements {Xk(r)}
defined by

Xk(r) = exp {(RePOk4 cot A(t)dt + (Im Pk)(MOA - (14.2)

with Oo being a fixed angle satisfying Q 6 00 6 O.
Instead of finding the solution of Problem B, we shall prove

22



NRL REPORT 7265

THEOREM B'. There exist positive constants ak, c", and KN such that Eq. (13.3) has a unique

solution jN(x, V(x)) satisfying

(i) pN(x, v) is a holomorphic and bounded m-column vectorfunction for (x, v) in Eq. (14.1); and

(ii) SON(x, v) satisfies the inequality

[s-N(X, V)] 6 KN IV Iv N [e-Ren(x)] (14.3)

for (x, v) in Eq. (14.1).

This Theorem will be proved in Chapter V below.

15. Fundamental Inequalities for Problem B

In order to prove Theorem B', we must prove fundamental inequalities stated in

LEMMA 3. Let (x1 , v1 ) be an arbitrary point in the domain of the form

0 < Ixi < aNw(argx), ( < argx < E [v] < cN[X(argx)]. (15.1)

Let V(x) = ln(x")C, with C = ln(xl-f)vl; namely V(xl) = v. Then there exists an m-vector path
Fix, with elements {FrjxJ such that

(i) each curve rF,1 joins the point x1 with the origin and is contained in the domain

0 < IxI < aNw(argx), e < argx < e, (15.2)

except for the origin;
(ii) as x moves on rjxj, we have

[V(x)] < cN[X(argx)], (3 < argx < 3; (15.3)

(iii) if aN satisfies

2NiIpII(aN max_ (7r))a < 11yii' sin 2ae, (15.4)
) <T<0

then

J iXI-o-IIIV(X) INe-Ren1(x)dsj2 6 V(Xi)I Ne-Resyx (15.5)
rjx1 F~~~~~~~~~~I1YI!I' sin 2ae (55

Here si is the arc length measured from the origin to the variable x on Fix, .

The curves rjx 1 are defined exactly the same way as in Section 10 above. Then assertion (i)

is evidently satisfied.
For assertion (ii), we introduce the polar coordinates x, = r ei° and x = p eir. Let the compo-

nents of V(x), v1, and , be {Vk(x)}, {vkl}, and {fPk} respectively. Then Eq. (15.3) is equivalent to
n inequalities

IVk(X)I < cN exP{(Re Pk)J cot A(t)dt + (Im Ik)(o- } (1 5.6.k)

23



PO-FANG HSIEH

as x moves on the curve Ijx. Observe that the curve consists of the two parts rF and rF;, in general,
and we have Vk(x) = vkl(x/xl)Mk. Thus

IVk(x)! = Ivkt I(P) exp {(Im Pk)(O -T)}- (15.7.k)

For x on rF, p is a function of r given by Eq. (10.10), and we have

I Vk(x)I = Ivk1 I exp {(Re ,uk)J cot ai(t) dt + (Im PAO)(O -

consequently, by Eq. (10.9),

IVk(x)I 6 Ivk Iexp (Re Ilk) cot A(t)dt + (Im Ik)(O -T)}. (15.8.k)

On the other hand, since v0 = V(xl), vkI must satisfy the inequality given by Eq. (15.6.k) with
7 = 0. Namely,

Ivk1I < cNexp (Repk)I cot A(t)dt + (ImIUk)(Oo-0) (15.9.k)

Hence, by Eqs. (15.8.k) and (15.9.k), Eq. (15.3) holds for x on rj.
For x on rj', p < r and 7 is constant. Hence, by virtue of Eq. (15.7.k), IVk(x)I is a nonincreas-

ing function of p, since Re 11k > 0. Therefore, Eq. (15.3) continues to hold if it holds at the starting
point of rF'. Thus assertion (ii) is proved.

For assertion (iii), Eq. (15.5) is reduced to Eq. (10.2) if p = 0. If p # 0, notice that, analogous
to Eq. (10.8),

lVk(X)IX dj IVk(x)I = Re (Vk(x)- ds Vk(x)) = Re (Pkx-1 dX) (15.10)

Since Idx/dsil = 1, except for xi (the joint of rj and rF'), we have

dsf-li lV(x)ii > - IxV'iiplil Il V(x)ll (15.11)

If
for x on Fjx 1 , except for x~i. Thus

d (IIV(x)IjNe-Resi(x)) _> X-a-liiV(x)JINe-Rei(x)(1lyii sin2oe -Niipi! Ix 1x) (15.12)

for x on rjx 1 ,except for x*. Thus, if aN satisfies Eq. (15.4), then

ds (IIV(x)JiNe-Re12j(x)) > 11511 2in 2ae IxIa-,1iV(x)!INe-Ren1(x) (15.13)

ds 
2

for x on rjxI, except for xl.
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By the fact that Ixl-a-l !iV(x)iNe-Re1(x) is bounded in the neighborhood of xl*, Eq. (15.5)
follows immediately by a limit process at Xi and by Eq. (15.13).

Thus Lemma 3 is proved.

V. PROOF OF THEOREM B'

16. Successive Approximations

We shall prove Theorem B' in this chapter by means of successive approximations which involve
improper contour integrals and analyticity with respect to several complex variables.

Let (x 1,v 1) be an arbitrary point in the domain given by Eq. (4.1), where aN and cN are to be
specified shortly. Let V(x) be an n-column vector function defined by

V(x) = V1 , for = O0

V( ) In (( X )V, for J
Namely, V(x) is a holomorphic solution of xz' = ln(p)z such that V(xl) = v0. It is evident that the
system of Eq. (13.3) is equivalent to

4)(xl,vJ) =.x-llm(e-52(x))f(xV(x);lm(el(l))41(xV(x))dx. (16.1)
rXi

The successive approximations for Eq. (16.1) are defined to be the sequence {V9)(XjV')jk=
0,1,2...} where

V°)(xj'v1) = 0, (16.2)

(D)(Q+ I)(x I,vl ) = Jx-~l lm (e-52(X))f(x, V(x);lm(e a(x))4,(Q)(x, V(x))dx . (16.3.k+l1)
rX,

We shall prove that such a defined sequence as {V(2)(x 1 ,v1)} converges to the desired solution of
Eq. (16.1), or equivalently, that of Eq. (13.3), in the following steps:

(I) Each term of the sequence { 4(2)(xjvl)} is well defined andholomorphic in (xl,vl) for
Eq. (14.1).

(II) The sequence {1I(2)(xj,v1)} converges uniformly to sp(x1 ,vl) in any compact subset of
Eq. (14.1).

(III) The limit function p(xl,vl) satisfies the integral equation given by Eq. (16.1), namely, the
contour integral and the limiting process are interchangeable.

(IV) The function po(x,vl) satisfies the integral equation given by Eq. (13.3).
(V) A solution of Eq. (13.3) satisfying Eq. (14.3) is unique.

Due to the relationship between vt and xl through V(x), Step IV is not an immediate conse-
quence of Step III.

If Steps I to V are proven, the unique solution (p(x, v) will be denoted by fN(x, v). Thus Theorem
B' is proved.
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17. The Function 4( 1)(x,v)

We shall prove Step I by means of mathematical induction. In the meantime, the constants
aN, cN, and KN will be specified.

Let us define

4()(x 1,v 1) $ f(l)(x, V(x))dx (17.1)

where

f(1)(x,v) = x-a-1 1m(e-n(x))f(xv;0).

Existence of Integrals-From the definition of rxi in Section 10, we know that each element
FjXi or rxi has rectilinear portion rF' of positive length. Furthermore, the jth component fLi) of
f (1) tends to zero exponentially as x approaches the origin along Fr' Thus each component I( 1) of
the integral given by Eq. (17.1) exists at x = 0.

At the joint xi of F; and F;', the integrand j(D1) is bounded. Also, the arc rFxi is rectifiable.
Hence, b1(1) exists at xi.

Thus, (D(0)(x1,V
1) exists for (xl,vl) in Eq. (14.1).

Upper Bound-By Eq. (13.7), we have

[f(f)(xV(x))] < IJxF'1BNiIV(x)IJN[e-Ren(x)] (17.2)

for

0 < Ix! < a"co(argx), e < argx < 9. (17.3)

Choose a" so small that

2NI1P11(a " max _(r))a < llyll'sin2ae. (17.4)

Then, by Lemma 3, we have

[b(1)(x 1 ,vl)I] < I! sin 2BN lv iN[e-ReE2(x1)] (17.5)

for (x 1,v 1) in Eq. (14.1).
Now, we can choose KN and cN such that

2 BN
KN = 1yll'sin2ae - 2H (17.6)

and " satisfies

KNfcNT max I!XT)II}N < CN. (17.7)
0 <'r< 6

These inequalities are needed in defining V(2)(x,v) by Eq. (16.3).
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Analyticity-First of all, when xi is fixed, Eq. (17.5) implies that the integral given by Eq.
(17.1) converges uniformly with respect to v0. Thus '1(1)(x 1,v

1) is holomorphic in v0 for
[v11 c [X(arg x)] when X1 is fixed.

Next we shall prove that 1((l)(x1 , vI) is holomorphic in xl for Eq. (17.3) when vI is fixed. This

is trivial when A = 0. Thus, it is sufficient to prove for ,u 0.
Let x0 be a point in Eq. (17.3) and sufficiently near xi, and we want to show that

X f(1)(x,V(x))dx =f f(l)(x,V(x))dx +[ f(1)(x,V(x))dx. (17.8)
rx1 rX0 Jxx

In fact, let to and t, be, respectively, the intersections of the paths rjxo and rFx, with a small circle
lxi = 6. Since v 1 is fixed and fj(l)(x, V(x)) is holomorphic in Eq. (17.3), the jth component of Eq.
(17.8) is an immediate consequence of Cauchy's integral theorem and

S fj (1)(x,V(x))dxL+ 0 as6 -+ 0. (17.9j)

Here Ft denotes the circular arc of Ix! = 6 in Eq. (17.3) joining to with t1 . However, from the con-
struction of rixo and rixl, we know that Re ni(x) > 0 for x on F1. Thus the left-hand side of Eq.
(17.9.j) tends to zero exponentially as 6 tends to zero, and Eq. (17.8) is proved component-wise.

Now let V(x) be specifically denoted by W(x,xl,vl), namely, W(xl,xl,vi) = vO. Let
v3 = W(xl,xl,vl). Then, by Eq. (17.8)

Vl)(x1,v1) - 4)(1)(il,v) ={4)(1)(x1,v1) -It(l~~)

+ {()(,) - ()(,V)

= 5 f(1)(x,W(x,x1,vl))dx -J f(1)(x,W(x,i 1 ,vI3))dx
rX1

+ {dI(1)(1,) lvl -

= -J f(1)(x,W(x,x 1,v1))dx +

Thus, we have that

im ()(X , - -(l)(iiO) f(l)(xi VI) + (D)(xv) dv V-V1

il~xl fc -XI dx IXx I

exists, since we have just proved that the matrix F(1 ) (xl,vl) exists. Therefore, 'D(1)(x 1 ,v1 ) is holo-

morphic with respect to xI for Eq. (17.3) when v0 is fixed.
Hence by Hartog's theorem, 4'(1)(x1,v1) is holomorphic in (xl,vl) for Eq. (14.1).
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18. The Functions{ (2)(xv)j

Let H(Q) denote the proposition

ll(k). (i) The function '(D2)(xl,vl ) is well definedand holomorphicfor(xl,vl) in Eq. (14.1);
(ii) 4F(1)(xj,v 1) satisfies

[F(2)(x1 ,v1) - f>(2 ')(x1 ,vt )I • H (111'y$s 2 e) 1ivl IN[e (x1)I (18.1.3)

and

[P(')(X1,v1)] 2BN + {l+ ( 2H11' 2 j v )N[e-Re(x) (18.2.2)

for (xl,vl) in Eq. (14.1).

We have seen that HI(2) is valid in Section 16 above.
Suppose that II(Q) is true for 2 = 1,2,.. .,a. We want to show that rl(a+l) is true.
First of all, by Eqs. (17.6), (17.7), and (18.2) with 2 = a, the function f(x, V(x));

1m(en(x))t)(a)(x,V(x)) is well defined and holomorphic in Eq. (17.3). Thus, 1D(a+l)(xjv 1) is
given by Eq. (16.3) for 2 + 1 = a + 1, which does exist, by the same reasoning as that in the first sub-
section of Section 17.

By Eqs. (13.8), (18.1) for 2 = a, and (15.5), we have

[,I(a+l)(x1,vl) - (a)(x,,vl < (N 2H a+ 1 2IjN[e-Ren(xj)j (18-1-a+l)
H (1,l'i2ce) 11

and, consequently,

[4)(a+1kxiv1)] < ii'sin 2ae + +(i1!' sin 2 ae)}IIVII iIN[e-Ren(x1)]. (18.2.a+1)

Thus, H(a + 1) is true. Hence, by mathematical induction, H(Q) is true for all positive integers
R. Therefore Step I is proved and we have the estimates given by Eqs. (18.1.Q) and (18.2.2).

19. Convergence of {'D(2)(xJv)}

By Eqs. (18.1.2), (13.8), (15.5), (17.6), and (13.9), we have

[(D )(XlVl) - 1(2)(xlvl)] < N iv1 IjN[e-Ren(x1)I (19.1)

for xl,vl in Eq. (14.1). Thus, the sum

2-1

4F(2)(x1,v1) = 21{'f(a+i)(xl,vl) - 4F(a)(xlvl)} (19.2)
a=O

converges absolutely and uniformly in any compact subset of Eq. (14.1) as 2 tends to -. Denote the
limitfunctionby t(x 1 ,v1 ). Since each term '( 2 )(xl,vl) isholomorphic in Eq. (14.1), p(xl,vl) is also
holomorphic in Eq. (14.1). Moreover, we have
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[gnXIVI)] 6- KNjjVl||fN[e-Ren(xj)j (19.3)

for (xl,vl) in Eq. (14.1). Thus Step II is proved.

20. Integral Expression of Sp(x,v)

We want to show that

po(xlvl) = x 1- lm(e-n(x))f xV(x); lim lm(en(X))4F(2)(xV(x)))dx. (20.1)
rX1

Let the jth component of up be upj; it is sufficient to prove that for a given 6 > 0, there exists a
positive integer L(6,xl) such that

| x-c-1e-j(x){4(x, V(X); ip(x, V(x))) - f.(x, V(x); ''( 2)(x, V(x)))} dx I< 6 (20.2)
Fj1

for k >-L(6,x1 ) and all indicesj.
In fact, since the integral in the left member of Eq. (20.2) exists at the origin, we can choose a

point A, independent of Q. on 1I7 such that the portion of the integral in Eq. (20.2) from the origin
to x1i is less than 6/2. On the other hand, by the uniform convergence of F(2 ) to so, we can choose
L(6,xl) such that, when k >L(6,xl), the portion of the integral in Eq. (20.2) along rj.x from x11 to
xl is less than 6/2. Hence, Eq. (20.2) is proved, and consequently, Step III is shown.

21. ,p(x, V(x)) as a Solution of Eq. (13.3)

For the sake of simplicity, rewrite the integral equation satisfied by p(x,v) as

p(x1,vl) T(x,V(x)) dx (21.1)
rx1

where

4I(x,v) = x-- 1m (e-n(x))f(x, v; 1m (e Q (X)),p(x,v))

and V(x) = W(x,xl,vl). In order to show that p(x,V(x)) satisfies Eq. (13.3) whenever (x,V(x)) is in
Eq. (14.1), it is sufficient to prove that

d- A(xov 0 ) = 1(x0,v0) (21.2)

where v° = W(x 0 ,x1 ,v").
Since W(x,xo,vO) = W(x,xl,vl), Eq. (21.1) can be written as

~x0,v°) = f f(xxovO))dx. (21.3)
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Hence,

d oP(xO,vO) = 4*xov) +J aTf(3W) { W(x,xO,v") (21.4)

+ a W(xxOV) . aW(x0,Xv1) {dx.
av0 ax0 Ix

However, for any constant #, the quantity 17 = W(Q,xv) is an integral of the equation xv' = ln(/.)v.
Thus, q = W(Q,x0 ,v0) = W(Q,xj,v 1), and

d W(Q,x0,v") = O.

Hence the expression in the braces of the integrand of Eq. (21.4) vanishes identically. Thus, Eq.
(21.2) holds and Step IV is proved.

22. Uniqueness

Suppose that there are two solutions of Eq. (13.3) satisfying Eq. (14.3). Let I(x, V(x)) be the
difference of these two solutions. Then there exists a positive constant K such that

[i(x 1,vO)] 6 KI1vli!N[e-Ren(xl)] (22.1)

for (xl,vl) in Eq. (14.1). By the Lipschitz condition given in Eq. (13.8), and by Eqs. (15.5) and
(13.9), we have

[s~x~vl] 62 IVIIIN[e-Ren(xj)]

for (xl,v t ) in Eq. (14.1). Repeating this process, we have, for any positive integerp,

[|p(X1,V1)] 6 2P |IVlllN[e-Ren(xj)]

for (xl,vl) in Eq. (14.1). Hence,

iP(x1 ,v t ) 0

for (xl ,vl,) in Eq. (14.1), and Step V is proved.
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